Automatic Relative Orientation of Terrestrial Laser Scans using Planar Structures and Angle Constraints

Claus Brenner and Christoph Dold
Institute of Cartography and Geoinformatics
Leibniz Universität Hannover
Introduction
Relative orientation of terrestrial laser scans

- Build overall point cloud from multiple scans
Relative orientation of terrestrial laser scans

- Build overall point cloud from multiple scans
- Object recognition (point cloud vs. model)
- Robotics (kidnapped robot)
In reality: \(\mathbf{x}_2' = \mathbf{R}\mathbf{x}_2 + \mathbf{t} \)

Find \(\mathbf{R} \) and \(\mathbf{t} \) which minimize \(\sum \| \mathbf{x}_1 - \mathbf{x}_2' \|^2 \)

- Nonlinear (due to \(\mathbf{R} \)), **but:**
- Closed form solutions by Sansò (1973), Horn (1987)
Main problem: finding correspondences

- Manual / semiautomatic: signalized points (LS software)
- Use heuristic based on proximity: “close points are corresponding points”
 - Iterative closest point (ICP) algorithm
 - Chen & Medioni (1991), Besl & McKay (1992)
 - Many variants, see e.g. Rusinkiewicz & Levoy (2001), Grün & Akca (2005)
 - Commercially available
 - Requires good initial alignment
Other than points: more meaningful primitives

- Planes, Cylinders, Torii, … (Rabbani et al., ISPRSJ 61(6))
- More complex primitives may fix more d.o.f.
- Very few, as compared to points in point cloud

Here: Planes

\[\langle n_i, x \rangle - d_i = 0 \]
\[\langle m_i, x \rangle - e_i = 0 \]
\[\langle p_i, x \rangle - f_i = 0 \]
Other than points: more meaningful primitives

- 3 Plane correspondences required to determine Transformation
 - (actually: 2 for rotation, but 3 for translation)
Finding correct correspondences

S_1

Point Cloud 1

Segmentation

Collection of p planar patches 1

Search for Correspondences

Compute “best” R, t

R, t

S_2

Point Cloud 2

Segmentation

Collection of p planar patches 2
Problem 1: Rating of solution (score function)

- Typically, overlap between (aligned) scans would be used as score function.
- Standpoints far apart have only little overlap (though being aligned correctly).
- May have larger overlap when transformation is incorrect.
- “True” overlap is not known in advance.

- More elaborate score functions take more computation time.

- Not solved here…
Example: correct transformation yields little overlap (SP01-SP11)
Example: false transformation yields larger overlap (SP01-SP11)
Finding correct correspondences

\[
\binom{p}{3} \cdot \binom{p}{3} \cdot \frac{3!}{2}
\]
Problem 2: Reducing the number of possible combinations

- Testing all 1.15 billion solutions is not feasible
- Goal: Build a hierarchy of tests, or “filters”
 - the most inexpensive tests are applied first
 - expensive tests are only applied after a huge number of false solutions has been ruled out
 - the tests do not rule out the correct solution
- This is the topic of the paper
The test scene
Real test data

- **Riegl LMS-Z360i**
 - 360° x 90° f.o.v.
 - 12 mm single shot accuracy
- **Reference orientations by RiscanPro standard procedure**
 - Artificial targets, fine scan
 - Registration error in the range of a few millimetres
- **20 terrestrial scans**
 - 12 upright, 8 tilted
 - Spacing of approx. 5 m
 - Overlap 83% (SP01-SP02) down to 2.3% (SP01-SP12a)
All scans combined (removed points on ground)
Scan positions (drawn into map)
Overlap of scan positions

- Count of overlapping points (within 0.5 m distance), given as percentage

<table>
<thead>
<tr>
<th>Pair</th>
<th>[%]</th>
<th>Pair</th>
<th>[%]</th>
<th>Pair</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-02</td>
<td>83.1</td>
<td>01-08a</td>
<td>45.7</td>
<td>02-03</td>
<td>82.6</td>
</tr>
<tr>
<td>01-03</td>
<td>77.7</td>
<td>01-09</td>
<td>27.3</td>
<td>03-04</td>
<td>81.3</td>
</tr>
<tr>
<td>01-03a</td>
<td>73.3</td>
<td>01-09a</td>
<td>28.8</td>
<td>04-05</td>
<td>83.6</td>
</tr>
<tr>
<td>01-04</td>
<td>68.8</td>
<td>01-10</td>
<td>16.2</td>
<td>05-06</td>
<td>80.3</td>
</tr>
<tr>
<td>01-05</td>
<td>63.0</td>
<td>01-10a</td>
<td>11.4</td>
<td>06-07</td>
<td>81.0</td>
</tr>
<tr>
<td>01-05a</td>
<td>59.7</td>
<td>01-11</td>
<td>9.9</td>
<td>07-08</td>
<td>81.3</td>
</tr>
<tr>
<td>01-06</td>
<td>50.5</td>
<td>01-11a</td>
<td>12.2</td>
<td>08-09</td>
<td>81.0</td>
</tr>
<tr>
<td>01-06a</td>
<td>54.5</td>
<td>01-12</td>
<td>3.6</td>
<td>09-10</td>
<td>82.9</td>
</tr>
<tr>
<td>01-07</td>
<td>50.7</td>
<td>01-12a</td>
<td>2.3</td>
<td>10-11</td>
<td>77.2</td>
</tr>
<tr>
<td>01-08</td>
<td>43.6</td>
<td>11-12</td>
<td></td>
<td></td>
<td>74.9</td>
</tr>
</tbody>
</table>
Angle constraint
Idea: angle constraint

- 3 normal vectors \rightarrow 3 angles between normal vectors
- Angles between normal vectors must be the same in both scans
- Independent of scene content
Choice of angle tolerance

- Planes are estimated using many points
 - we expect quite accurate normal vectors
 - if so, we could set a small tolerance

- To find the tolerance from the real scene we
 - manually assigned planes between scans
 - computed angles between all pairs (total: 328 pairs)
 - computed differences
Choice of angle tolerance

Example for manual plane assignment

(SP01)

(SP09a)
Choice of angle tolerance

Result: more than 90% of the corresponding pairs show the same angles within 1°
Effect of filtering out angles outside tolerance

- Check which triples (out of 1.15 billion) lead to “correct” transformation (5° and 1m within reference)

<table>
<thead>
<tr>
<th>Factor approx. 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP 01-02</td>
</tr>
<tr>
<td>SP 01-03</td>
</tr>
<tr>
<td>SP 01-03a</td>
</tr>
<tr>
<td>SP 01-04</td>
</tr>
<tr>
<td>SP 01-05</td>
</tr>
<tr>
<td>SP 01-05a</td>
</tr>
<tr>
<td>SP 01-06</td>
</tr>
<tr>
<td>SP 01-06a</td>
</tr>
<tr>
<td>SP 01-07</td>
</tr>
<tr>
<td>SP 01-08</td>
</tr>
<tr>
<td>SP 01-08a</td>
</tr>
<tr>
<td>SP 01-09</td>
</tr>
<tr>
<td>SP 01-09a</td>
</tr>
<tr>
<td>SP 01-10</td>
</tr>
<tr>
<td>SP 01-10a</td>
</tr>
<tr>
<td>SP 01-11</td>
</tr>
</tbody>
</table>
Determination of rotation component
Determination of rotation component

- Only two normal vector pairs required to determine rotation
- Number of possible combinations:
 \[
 \binom{50}{2} \cdot \binom{50}{2} \cdot 2 = 3 \times 10^6
 \]
- Number of compatible combinations →
 - 3-5% of total
 - approx. 140,000

<table>
<thead>
<tr>
<th>Pair</th>
<th>Compatible</th>
<th>%</th>
<th>Correct</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP01-02</td>
<td>145202</td>
<td>4.84</td>
<td>8034</td>
<td>5.53</td>
</tr>
<tr>
<td>SP01-03</td>
<td>147944</td>
<td>4.93</td>
<td>7497</td>
<td>5.07</td>
</tr>
<tr>
<td>SP01-03a</td>
<td>115260</td>
<td>3.84</td>
<td>5566</td>
<td>4.83</td>
</tr>
<tr>
<td>SP01-04</td>
<td>164200</td>
<td>5.47</td>
<td>5852</td>
<td>3.56</td>
</tr>
<tr>
<td>SP01-05</td>
<td>145098</td>
<td>4.83</td>
<td>3496</td>
<td>2.41</td>
</tr>
<tr>
<td>SP01-05a</td>
<td>121400</td>
<td>4.04</td>
<td>2885</td>
<td>2.38</td>
</tr>
<tr>
<td>SP01-06</td>
<td>166238</td>
<td>5.54</td>
<td>4218</td>
<td>2.54</td>
</tr>
<tr>
<td>SP01-06a</td>
<td>165922</td>
<td>5.53</td>
<td>4414</td>
<td>2.66</td>
</tr>
<tr>
<td>SP01-07</td>
<td>173934</td>
<td>5.80</td>
<td>2513</td>
<td>1.44</td>
</tr>
<tr>
<td>SP01-08</td>
<td>167550</td>
<td>5.58</td>
<td>2639</td>
<td>1.58</td>
</tr>
<tr>
<td>SP01-08a</td>
<td>168050</td>
<td>5.60</td>
<td>2728</td>
<td>1.62</td>
</tr>
<tr>
<td>SP01-09</td>
<td>141868</td>
<td>4.73</td>
<td>1651</td>
<td>1.16</td>
</tr>
<tr>
<td>SP01-09a</td>
<td>140498</td>
<td>4.68</td>
<td>926</td>
<td>0.66</td>
</tr>
<tr>
<td>SP01-10</td>
<td>157464</td>
<td>5.25</td>
<td>2115</td>
<td>1.34</td>
</tr>
<tr>
<td>SP01-10a</td>
<td>113540</td>
<td>3.78</td>
<td>1007</td>
<td>0.89</td>
</tr>
<tr>
<td>SP01-11</td>
<td>138768</td>
<td>4.62</td>
<td>929</td>
<td>0.67</td>
</tr>
<tr>
<td>SP01-11a</td>
<td>147310</td>
<td>4.91</td>
<td>1642</td>
<td>1.11</td>
</tr>
<tr>
<td>SP01-12</td>
<td>105978</td>
<td>3.53</td>
<td>2</td>
<td>0.00</td>
</tr>
<tr>
<td>SP01-12a</td>
<td>94758</td>
<td>3.16</td>
<td>148</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Determination of rotation component

- For each normal vector pair correspondence, compute rotation
- Compute angles ω, φ and κ
- Insert into histogram bins (bin size 2°)
- Sort bins in decreasing order of bin count
Closer look at SP01-02 (close) and SP01-09a (far)

- Bin counts in decreasing order
 - for close SP, a clear peak results
 - for SP far apart, no clear peak
 - indeed, for SP01-SP09a the correct rotation corresponds to the 8th largest bin
Close look at all bin counts

First 20 bins of SP01-02

Dot: correct solution

White: peak at first solution
Closer look at all bin counts

Peak is correct solution
Closer look at SP01-SP07

κ + 180°
Situation in map

Symmetry
(middle of crossing streets)
Closer look at failures / late solutions

<table>
<thead>
<tr>
<th>Pair</th>
<th>[%]</th>
<th>Pair</th>
<th>[%]</th>
<th>Pair</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-02</td>
<td>83.1</td>
<td>01-08a</td>
<td>45.7</td>
<td>02-03</td>
<td>82.6</td>
</tr>
<tr>
<td>01-03</td>
<td>77.7</td>
<td>01-09</td>
<td>27.3</td>
<td>03-04</td>
<td>81.3</td>
</tr>
<tr>
<td>01-03a</td>
<td>73.3</td>
<td>01-09a</td>
<td>28.8</td>
<td>04-05</td>
<td>83.6</td>
</tr>
<tr>
<td>01-04</td>
<td>68.8</td>
<td>01-10</td>
<td>16.2</td>
<td>05-06</td>
<td>80.3</td>
</tr>
<tr>
<td>01-05</td>
<td>63.0</td>
<td>01-10a</td>
<td>11.4</td>
<td>06-07</td>
<td>81.0</td>
</tr>
<tr>
<td>01-05a</td>
<td>59.7</td>
<td>01-11</td>
<td>9.9</td>
<td>07-08</td>
<td>81.3</td>
</tr>
<tr>
<td>01-06</td>
<td>50.5</td>
<td>01-11a</td>
<td>12.2</td>
<td>08-09</td>
<td>81.0</td>
</tr>
<tr>
<td>01-06a</td>
<td>54.5</td>
<td>01-12</td>
<td>3.6</td>
<td>09-10</td>
<td>82.9</td>
</tr>
<tr>
<td>01-07</td>
<td>50.7</td>
<td>01-12a</td>
<td>2.3</td>
<td>10-11</td>
<td>77.2</td>
</tr>
<tr>
<td>01-08</td>
<td>43.6</td>
<td></td>
<td></td>
<td>11-12</td>
<td>74.9</td>
</tr>
</tbody>
</table>
Determination of translation component
Determination of translation component

- For each of the 20 “best” rotations, search for translations
- Based on plane pair correspondences already established during rotation step
- Using RANSAC
- Rating of solutions: count identical planes (within 1m and 1°)

Ranking of correct (rotation + translation) solutions

<table>
<thead>
<tr>
<th>SP01-</th>
<th>02</th>
<th>03</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>05</th>
<th>06</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>08</th>
<th>09</th>
<th>09</th>
<th>10</th>
<th>10</th>
<th>11</th>
<th>11</th>
<th>12</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>23</td>
<td>11</td>
<td>5</td>
<td>12</td>
<td>33</td>
<td>14</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Run 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>12</td>
<td>4</td>
<td>20</td>
<td>53</td>
<td>6</td>
<td>35</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Run 3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>7</td>
<td>28</td>
<td>13</td>
<td>5</td>
<td>27</td>
<td>13</td>
<td>21</td>
<td>11</td>
<td>-</td>
</tr>
</tbody>
</table>
Summary and Outlook
Summary I

1,15 billion triple correspondences

< 0.022% lead to correct transformations
Summary II

Rotation only

S_1
3 million pair correspondences
S_2

Filter: angle constraint

140,000 compatible correspondences

Filter: ω, φ, κ histogram

Keep 20 bins with largest count

Translation

Filter: Score based on plane equations

< 100 solutions

Filter: Score based on scan points

Final solution
Summary III + Outlook

- Relative orientation without initial values
- Based on extracted planes
- Uses simple filters to cut down search space
 - Angle constraint
 - Orientation bins
 - Score based on plane equations
 - Point cloud comparison comes last (not shown)

- Reduction factor: approx. 100 instead of 1.15 billion = 10^7

- Work on final score function as well
 - Efficient
 - Selective
- Verify with other scenes