Processing full-waveform lidar data: Modelling raw signals

A. Chauve, C. Mallet, F. Bretar, S. Durrieu, M. Pierrot-Deseilligny, W. Puech

adrien.chauve@ign.fr

ISPRS Workshop on Laser Scanning 2007

Espoo, September 12, 2007
Outline

1. Introduction
 - Background on FW lidar data
 - Context

2. Methodology
 - FW processing: approach
 - Modelling functions
 - Point extraction algorithm

3. Results
 - Point extraction
 - Modelling functions

4. Conclusion and future work
Outline

1. Introduction
2. Methodology
3. Results
4. Conclusion and future work
Background on full-waveform lidar data

- Entire backscattered signal recorded,
- Acquisition of a continuous altimetric section (∼ 30 m profiles).
 (1 ns → 30 cm).

Advantages:

- Waveform post-processing,
- Additional information on the illuminated surface structure,
- Physical properties can be found.

▷ More control in the interpretation process.
Full-waveform lidar data to study forested areas

- Full-waveform lidar data
- Gaussian mixture decomposition
- 3D point cloud with attributes
- Classification
 - DTM
 - Tree species classification
 - Forest parameters (tree height, LAI, ...)

[Wagner IJPRS06]

[Reitberger PCV06]
Context

- Full-waveform lidar data to study forested areas

In the context of processing full-waveform lidar data, the following steps are involved:

1. Full-waveform lidar data
2. Gaussian mixture decomposition
3. 3D point cloud with attributes
4. Classification
 - DTM
 - Tree species classification
 - Forest parameters (tree height, LAI, ...)
5. Advanced modelling

[Wagner IJPRS06]

[Reitberger PCV06]
Full-waveform lidar data to study forested areas

- Full-waveform lidar data
 - Gaussian mixture decomposition
 - Advanced modelling
- 3D point cloud with attributes
- Classification
 - DTM
 - Tree species classification
 - Forest parameters (tree height, LAI, ...)
- Morphological interpretation

References:
- Wagner IJPRS06
- Reitberger PCV06
Full-waveform lidar data to study forested areas

- Full-waveform lidar data
- Gaussian mixture decomposition
- 3D point cloud with attributes
- Classification
- DTM
 - Tree species classification
- Forest parameters (tree height, LAI, ...)
- Advanced modelling
 - Improves
 - Morphological interpretation
 - Improves

[Wagner IJPRS06]
[Reitberger PCV06]
Outline

1. Introduction
2. Methodology
3. Results
4. Conclusion and future work
Waveform processing: approach

Decomposing waveforms into a sum of components (echoes):

\[y = f(x) = \sum_{j=1}^{n} f_j(x) \]

- parametric approach
- targets characterized by model functions \(f_j \)
Waveform processing: approach

Gaussian

\[a_j \exp \left(-\frac{(x-\mu_j)^2}{2\sigma_j^2} \right) \]

3 parameters

symmetric
Waveform processing: approach

Waveform \rightarrow Modelling functions \rightarrow Point extraction algorithm

Gaussian

$$a_j \exp \left(- \frac{(x - \mu_j)^2}{2\sigma_j^2} \right)$$

- 3 parameters
- Symmetric

Lognormal

$$a_j \exp \left(- \frac{(\ln(x - s_j) - \mu_j)^2}{2\sigma_j^2} \right)$$

- 4 parameters
- Asymmetric
Waveform processing: approach

Gaussian

\[a_j \exp \left(-\frac{(x-\mu_j)^2}{2\sigma_j^2} \right) \]

3 parameters, symmetric

Lognormal

\[a_j \exp \left(-\frac{\left(\ln(x-s_j)-\mu_j \right)^2}{2\sigma_j^2} \right) \]

4 parameters, asymmetric

Generalized Gaussian

\[a_j \exp \left(-\frac{|x-\mu_j|^{\alpha_j^2}}{2\sigma_j^2} \right) \]

4 parameters, flattened or peaked
Point extraction algorithm

Waveform → Modelling functions → Point extraction algorithm

Example of full-waveform raw data

Amplitude

Time (bins)
Point extraction algorithm

1. Estimate number of components

```
| Waveform | Modelling functions | Point extraction algorithm |
```

Estimate number of components

```
Amplitude
0 10 20 30 40 50 60
Time (bins)
0
10
20
30
```

A. Chauve Processing full-waveform lidar data 9/17
Point extraction algorithm

1. Estimate number of components
2. Parameter optimization

Non-linear least-squares fitting
Point extraction algorithm

1. Estimate number of components
2. Parameter optimization
3. Detect missing peaks

Enhanced peak detection

- Waveform
- Modelling functions
- Point extraction algorithm
Point extraction algorithm

1. Estimate number of components
2. Parameter optimization
3. Detect missing peaks
Outline

1. Introduction
2. Methodology
3. Results
4. Conclusion and future work
Available full-waveform data

- **RIEGL LMS-Q560** device,
- Acquisition over Biberach City (Germany),
- Footprint size: 0.25 m,
- Pulse density: 2.5/m²

Data provided:
- **Waveform**: 1 or 2 sequence(s) of 60 samples
- **3D point cloud**: echoes found by embedded system.
Point cloud densification

- up to +50% points in 3D point cloud over vegetated areas
- up to +5% in urban areas (building edges)

Weak First/last echoes detection improvement

Amplitude image of the first echoes displayed in the sensor geometry.
Point extraction

Point cloud densification

- +50% points in 3D point cloud over vegetated areas
- +5% in urban areas (building edges)

Weak First/last echoes detection improvement

Image of altimetric differences between our first/last echoes and first/last echoes found by the embedded system.
Lognormal and generalized Gaussian models

- Lognormal: only improvement in isolated peaks inside a waveform
- Generalized Gaussian model globally improves the quality of fit

Histogram of residuals on the whole survey for Gaussian and generalized Gaussian models.
Modelling functions

α values histogram

- Building roofs
- Asphalt streets
- Dense vegetation

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.52</td>
<td>0.05</td>
</tr>
<tr>
<td>1.57</td>
<td>0.09</td>
</tr>
<tr>
<td>1.56</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. Methodology
3. Results
4. Conclusion and future work
Conclusion and future work

Conclusion

- Raw waveform analysis leads to:
 - 3D point cloud densification
 - better modelling of the raw signal with generalized Gaussian

Future work

- Mixture of functions using RJMCMC algorithm
- Validation of DTM with field measurements
- Use morphological interpretation for species classification.
Conclusion and future work

Conclusion

- Raw waveform analysis leads to:
 - 3D point cloud densification
 - better modelling of the raw signal with generalized Gaussian

Future work

- Mixture of functions using RJMCMC algorithm
- Validation of DTM with field measurements
- Use morphological interpretation for species classification.

Thank you!