Laser scanner simulator for system analysis and algorithm development: a Case with forest measurements

Antero Kukko*, Juha Hyyppä

Department of Remote Sensing and Photogrammetry
Finnish Geodetic Institute
Antero.Kukko@fgi.fi, Juha.Hyyppa@fgi.fi
Contents

▪ Introduction
▪ Ideas for the simulation
▪ Implementations
▪ Cases
▪ Summary
Introduction - 1

- Empirical data have a mixture of errors
- Comparison of system performance difficult
- Mapping algorithm development not always easy
- Sensor information not usually available
Introduction - 2

- Simulation provides
 - Known objects,
 - Component analysis,
 - Flexible platform for various sensor models,
 - Verification of future laser instruments
 - a tool for analyzing systematic properties of scanning LIDAR systems, and factors affecting the quality of the LIDAR end products
Ideas for the simulation - 1

- Sensor models
 - TopoSys Falcon II (line)
 - Riegl LMSQ560 (line)
 - Optech ALTM3100, ALTM2033 (Oscillating)
 - TopEye MkII (conic)
 - Other general sensors
 - Mobile mapping
 - Traffic flow and vehicle detection
 - etc.

Scan patterns of a line, conic and oscillating scanners
Ideas for the simulation - 2

- Palmer scanner video
 - TopEyeMkII_400m_100fps.avi

Laser Scanning 2007 and SilviLaser 2007
Espoo 13.9.2007

Antero.Kukko@fgi.fi
Finnish Geodetic Institute
Ideas for the simulation - 3

- Pulse transmission
 - Multi ray model
 - Pulse shape and length
 - Ideal Gaussian pulse
 - Any shape
 - Intensity model
 - TEM_{∞}
 - Any pattern
Ideas for the simulation - 4

- Intensity pattern video
 - 3DPulseInt_1J_1mrad_5ns_400m.avi
 - 1 J Gaussian pulse
 - 1 mrad
 - 5 ns
 - 400 m

![Intensity pattern video graph](image-url)
Ideas for the simulation - 5

- **Waveform and detection**
 - Each sub beam reflects from the target
 - The location of a scatterer in a beam area
 - Incidence angle effect reduces the back scattered energy
 - Summing the sub echoes to a high resolution prototype depending on the arrival time
Implementations

- Simulator runs in Matlab, most of the computing done in mex (dll).
- **Output:** $X_s, Y_s, Z_s, V_{dir}, X_f, Y_f, Z_f, \text{Waveform}_n$
 - Position of the sensor at the end (data split, batch)
 - first echo data
- **High resolution raster models used for surfaces**
 - Suitable for buildings and ground
 - Tree modeling if scanning angles are moderate (top view)
Cases - Forest

- Artificial forest model
 - 150x150 m²
 - 100 trees at random location

- Mean height 25.97 m, STD 0.58 m
- Mean crown diameter 10.31 m, STD 1.40 m
- Modeled by means of a sinusoidal surface with 5.0 cm grid spacing, 1.0 cm height resolution
Cases - Forest

- Simulation parameters
 - TopEye MK-II laser scanner
 - Altitude of 200 m, three flight directions
 - Flight speed of 25 m/s
 - Pulse repetition frequency 30kHz
 - Scanning angle 20 degrees
 - Sub-sampling of the 1.0 mrad laser beam with 53 rays within the footprint area of 20 cm in diameter
Cases - Forest
Cases - Forest

- Tree extraction
 - 0.5 m radius from the model data tree tops
 - 0.33 m underestimation to known ground
 - 0.02 m underestimation achieved if the simulated ground data considered
Cases - Forest

- Relatively good results are due to
 - Dense point cloud
 - Relatively flat tree tops
 - Small footprint size
 - Same reflectance for ground and tree

- Simulation and simulated data can be used

- For trees more realistic models need to be introduced
Cases – Comparison to real data

- Point cloud presentation of the simulated data (left) and the original laser scanning data of TopoSys Falcon II (right).

- Comparison of the original data (blue) with the simulated TopoSys Falcon II (red) and Optech ALTM 3100 (green).
Summary

- Simulator combines both spatial and radiometric components to produce realistic point cloud and waveform data
- Simulation is a significant adjunct in understanding of the error sources and their effects on data
- Simulation provides artificial data on known targets for algorithm development purposes in many fields of application without expensive data and time delays
Questions?