Luento-ohjelma | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Muunnos on useimmiten kohtisuora yhdenmuotoismuunnos ja sisältää seitsemän muuttujaa eli mittakaavan korjauksen, kolme siirtoa ja kolme kiertoa. Näitä ei voi havaita suoraan vaan ainoastaan välillisesti muunnospisteiden avulla. Muunnoksen edellytyksenä on, että stereomallilta on havaittu vähintään kolme sellaista pistettä, joiden koordinaatit tunnetaan myös kohdekoordinaatistossa. Käytännössä muunnospisteitä eli n.s. tukipisteitä on enemmän. Joissakin erikoistapauksissa mallikoordinaatisto on vino. Tällöin muunnos tehdään projektiivisesti ja muunnoksessa on 15 muuttujaa, kolme mittakaavaa, kolme siirtoa ja 3x3 kiertoa.
Stereomallin ulkoisessa orientoinnissa on aina tärkeää, että muunnokseen voidaan käyttää enemmän tukipisteitä kuin edellä mainitut kolme. Tukipisteitä saadaan sekä kohteella tehdyin mittauksin että fotogrammetrisesti kolmioimalla. Kolmioinnissa mallit ja kuvat orientoidaan ensin toisiinsa kuvablokiksi ja kuvablokki muunnetaan kohdekoordinaatistoon (blokkikolmiointi). Pelkät kohteella mitatut tukipisteet tulevat kysymykseen lähinnä silloin, kun on kyse yksittäisen stereomallin orientoimisesta.
Koska kohteen yksityiskohtainen kartoitus perustuu viime kädessä stereomallin tulkintaan ja siitä tehtyihin mittauksiin, on tärkeää, että malli on oikean muotoinen. Vaikka sisäinen ja keskinäinen orientointi tehdään tarkasti, jokainen stereomalli deformoituu orientointien jäännösvirheistä. Ulkoisen orientoinnin toisena tehtävänä onkin - koordinaatistomuunnoksen lisäksi - antaa käsitys tämän deformaation suuruudesta. Mallideformaatioiden luonnetta tarkastellaan virheitä simuloimalla. Osa virheistä on lineaarisia, ja ne kompensoituvat ulkoisen orientoinnin aikana. Osa virheistä on epälineaarisia, ja niiden vaikutusta hallitaan sijoittamalla ylimääräisiä tukipisteitä virheiden kannalta kriittisille stereomallin alueille.
Stereomallin keskinäinen ja ulkoinen orientointi voidaan korvata kummallekin kuvalle erikseen tehdyllä yhden kuvan ulkoisella orientoinnilla (Fotogrammetrian yleiskurssi).
Mittakaavan määritys ja XY-kohdekoordinaatiston
orientaatio.
Stereomallin tasaus ja Z-koordinaattiakselin orientaatio.
Stereomallin laskennollinen absoluuttinen orientointi.
Virheyhtälöt.
Virheyhtälökertoimien differentiointi.
Mittakaavan likiarvot.
Kiertomatriisin likiarvot.
Kiertomatriisin differentiointi.
Virheyhtälöt iterointia varten.
Koordinaattimuunnos.
Stereomallin ulkoisen orientoinnin tukipisteet valitaan mallin nurkista ja kuvan keskeltä. Tukipisteet toimivat myös mallien välisinä liitospisteinä. Tukipisteinä käytetään yleisesti keskinäisen orientoinnin ns. Gruberin pisteitä. Ne riittävät mallin mittakaavan määrittämiseen ja nivellointiin. Mikäli tukipisteillä kontrolloidaan mallideformaatioita, niitä tulee sijoittaa myös mallin keskelle.
Mittakaavan määrittäminen. Stereomallin mittakaava määritetään mittaamalla kojeella kahden tunnetun pisteen välinen etäisyys. Kun näitä etäisyyksiä verrataan toisiinsa, saadaan suhdeluku, jolla kuvakantaa on korjattava. Korjaus on lineaarinen, eikä vaikuta keskinäiseen orientointiin, mikäli se tehdään b_x:n suunnassa. (Miksi?)
Nivellointi. Stereomallin nivelloinnilla mallikoordinaatisto tasataan eli kallistetaan vaakatasoon. Tämä edellyttää sitä, että mallilta havaitaan vähintään kolmen pisteen korkeudet ja X- ja Y-koordinaatit. Kojeessa tasaus tehdään kallistamalla projektoreita sekä yhteisen Y-akselin ympäri (PHI-kierto) että X-akselin ympäri (OMEGA-kierto). Yhteiset kierrot eivät vaikuta keskinäiseen orientointiin.
Parallaksikaavoissa käytettiin mallikoordionaattien laskemiseen
kuvahavaintojen lisäksi kuvakantaa B ja kameravakiota c. Virhe kameravakion
c arvossa vääristää mallin muodon. Näissä
kahdessa kuvassa on orientoitu sama kuvapari, mutta oikeanpuoleisessa kuvaparissa
on käytetty kaksinkertaista kameravakiota. Neliö venyy kuvaussuunnassa
eli Z-koordinaatin suunnassa kaksinkertaiseksi, kun puolestan mallin X-
ja Y-koordinaatit säilyvät oikeina. Deformaatio on lineaarinen
ja tässä sitä kutsutaan affiiniseksi eli venyneeksi. Tämä
deformaatio voidaan kompensoida ulkoisen orientoinnin yhteydessä käyttämällä
Z-koordinaattien rekisteröinnissä eri mittakaavaa kuin X- ja
Y-koordinaateissa.
Virhe kuvakannan B arvossa ei vääristä mallin muotoa, mutta vaikuttaa suoraan sen kokoon. Tässä kuvassa sama kuvapari on orientoitu kahdesti, mutta oikeanpuoleisessa kuvaparissa on käytetty kaksinkertaista kuvakantaa. Neliö venyy joka suuntaan kaksinkertaiseksi. "Virhe" kompensoidaan ulkoisessa orientoinnissa mallin mittakaavaa korjaamalla.
Jäännösparallaksi dpx voidaan johtaa näistä havainnoista keskinäisen orientoinnin yhteydessä esitellyillä projektiokaavoilla. Jäännösparallaksi vääristää mallin Z-koordinaatin ja sen myötä myös X- ja Y-koordinaatit. Tätä ilmiötä kutsutaan stereomallin deformoitumiseksi. Käytännön tilanteissa vääristymää ei voi nähdä ja orientointi on tarkistettava mittauksin. Tarkistusmittaukset sisältyvät stereomallin ulkoiseen orientointiin.
Deformaation luonnetta voi havainnollistaa tasomaisella kohteella. Tarkastellaan jäännösparallaksin vaikutusta projektiotasolla ja valitaan tasoksi z = -c. Jäännösparallaksin vaikutus z-koordinaattiin lasketaan etäisyydenmittauksen epätarkkuutena dz.
Keskinäisen orientoinnin jäännösvirheiden vaikutus mallilta havaittuihin korkeuslukuihin eli z-koordinaatteihin.
Mallideformaatiot voidaan havainnollistaa myös korostetuin orientointiliikkein. Vaakaparallaksin muutos projektiotasolla näkyy vastinvalonsäteiden leikkauspisteen liikkeenä projektiotasoon nähden. Kun vaakaparallaksi muuttuu mallin kaikissa pisteissä yhtä paljon (X-liike), malli nousee tai laskee, mutta mallin muoto ei muutu. Kun vaakaparallaksi muuttuu mallin eri osissa eri tavoin, mallin pinta kaartuu (poikittais- ja pituuskallistus). Z-liike ja kuvan kiertäminen Z-akselin ympäri kallistaa mallia. Y-liike ei aiheuta mallideformatioita, mutta särkee keskinäisen orientoinnin, koska se aiheuttaa jokaiseen pisteeseen vastaavan pystyparallaksin eivätkä vastinvalonsäteet enään leikkaa toisiaan.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |