Luento-ohjelma | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Stereokuvauksen normaalitapauksessa kuvaussuunnat ovat yhdensuuntaiset ja kohtisuorassa kuvakantaa vastaan. Tästä seuraa se, että molemmat kuvat ovat samalla tasolla, joka on kohtisuorassa kuvaussuuntaa vastaan ja kameravakion etäisyydellä kuvien projektiokeskuksista. Valitaan kohdekoordinaatisto (XYZ) siten, että se on oikeakätinen ja origo sijaitsee vasemman kameran projektiokeskuksessa, X-akseli kulkee oikean kamera projektiokeskuksen kautta, ja Y-akseli on kuvatason suuntainen. Valitaan kummallekin kuvalle kuvakoordinaatistot, joiden origo sijaitsee kameran projektiokeskuksessa. Merkitään koordinaatistoja vasemmalle kuvalla (x'y') ja oikealle kuvalla (x''y''). Kuvakoordinaatistojen x- ja y-akselit ovat kohdekoordinaatiston X- ja Y-akselien suuntaiset. Kohdepisteiden etäisyydet kamerasta lasketaan Z-koordinaatteina. Kuvassa parallaksia on havainnollistettu kolmiolla, joka on piirretty vasempaan kameraan. Kun kameranpuoleisen parallaksikolmion kanta muodostuu x'- ja x''-vektoreista, se on yhdenmuotoinen kohteenpuoleisen parallaksikolmion kanssa, jonka muodostavat projektiokeskukset ja tarkasteltava kohdepiste.
Parallaksi havaitaan kuvatasolla kuvakoordinaattien x'' ja x' erotuksena. Tätä kuvakannan suuntaista parallaksia kutsutaan myös vaakaparallaksiksi erotuksena sitä vastaan kohtisuorasta y- eli pystyparallaksista. Stereokuvauksen normaalitapauksessa kuvakoordinaatit y' ja y' ovat aina yhtäsuuret eli pystyparallaksi on nolla (Miksi?). Vaakaparallaksi on nolla vain, jos kohde on äärettömän kaukana tai jos kuvat on otettu samasta pisteestä. Kummassakin tapauksessa kuvat ovat identtiset eikä kuvia voi käyttää etäisyyksien mittaamiseen.
Kohdepisteen etäisyys Z on kääntäen verrannollinen parallaksiin ja suoraan verrannollinen kameroiden kuvakantaan B (projektiokeskusten välimatka) ja kameravakioon c ( ~ polttoväli). Toisin sanoen, mitä etäämpänä kohde sijaitsee, sitä pienempi on parallaksi, ja mitä lähempänä, sitä suurempi. Vastaavasti parallaksi kasvaa, jos kameroiden väli kasvaa, tai, jos kameran polttoväli kasvaa.
Parallaksin käyttäytymistä voidaan havainnollistaa tarkastelemalla sitä vaiheittain eri koordinaattiakselien suunnassa. Jos kohdepistettä siirretään pitkin X-akselin suuntaista suoraa, kohteenpuoleisen parallaksikolmion korkeus eli Z-koordinaatti pysyy vakiona. Koska kameran- ja kohteenpuoleiset parallaksikolmiot ovat yhdenmuotoiset, kameroilla havaittava vaakaparallaksikaan ei muutu.
Kun kohdepistettä siirretään Y-akselin suunnassa, vaakaparallaksi pysyy edelleenkin muuttumattomana. Vaakaparallaksi onkin vakio kaikilla niillä kohdepisteillä, jotka sijaitsevat samalla kuvatason suuntaisella tasolla.
Kameran sisällä kuvat ovat negatiiviasennossa. Parallaksihavainnot tehdään yleensä positiiviasentoon käännetyllä kuvaparilla.
Kuvapari. Kuvat on esitetty tässä ristikkäin tarkasteltuina. Koska parallaksit mitataan pääpisteen suhteen, pääpisteet on ensin kohdistettava toisiinsa. Tässä esitetyt kuvat ovat kooltaan alkuperäisiä ja leikkamattomia, joten pääpisteet kohdistuvat, kun kuvien reunat kohdistetaan toisiinsa. Tämän jälkeen parallaksit mitataan vaakasuuntaisina koordinaattieroina. Parallaksimittausta voi harjoitella myös tavallisella viivaimella, jossa on millimetriasteikko. Sitä varten kuvat tulee tulostaa paperille. Kameravakio mitataan siinä tapauksessa myös viivaimella.
Parallaksihavainnot. Havainnot on laskettu kahden havainnon keskiarvoista ja parallaksi kuvan 2 ja kuvan 1 havaintojen erotuksista. Esimerkiksi parallaksihavainto -678.5 etäisyydelle 2.4 metriä saadaan lausekkeesta (421 + 275)/2 - (1101 + 952)/2. Kuten Z-koordinaateista nähdään, lukemat vastaavat kohtuullisen hyvin mitattuja etäisyyksiä. Lukusarjassa on kuitenkin selvä systemaattinen virhe, mikä johtuu siitä, että kuvissa on selvästi optiikasta johtuvaa piirtovirhettä. Myöskään kuvien keskinäinen orientointi ei ole tarkka. Alimmassa rivissä on laskettu parallaksihavainnon satunnaiseksi arvioidun virheen dpx vaikutus Z-koordinaattiin millimetrienä.
Kuvakanta ja kameravakio. Etäisyyksien laskemisessa tarvitaan kuvakannan B pituus ja kameravakio c. Kannan pituudeksi mitattiin kuvanottopaikkojen väli ja se oli 1.21 metriä. Kameran kameravakiota c ei voi suoraan mitata, mutta se on johdettavissa vertausetäisyyden S avulla. Vertausetäisyytenä käytettiin takaseinän ikkunan leveyttä 1.82 m, joka näkyi kuvalla 76 pikselin pituisena. Etäisyys ikkunaan oli 32.6 metriä.
Kuvapari, Ritarihuoneen länsipääty, 27.5.1971, viistokuvaus
30 goonia horisontista ylöspäin
.
Kuvien sisäinen orientointi, c(A) = 60.24 mm ja c(B)= 60.22 mm,
Kuvapari, FIM 8007, kuvat 2 ja 3, c = 152.99 mm, kuvausmittakaava 1 : 3'000
Kuvanottovälin voi havaita piirtämällä kummankin kuvan keskipisteen kartalle ja mittaamalla sen siitä. Tässä tapauksessa käytetään arvoa B = 250 m. Kuvakannan voi piirtää myös kuville ja mitata sen niiltä. Tätä kannan arvoa, esimerkiksi b = 83 mm, voi käyttää silloin, kun karttaa ei ole käytettävissä.
Ennen parallaksimittausta kuvat orientoidaan. Ensiksi merkitään kummankin kuvan pääpiste reunamerkkien avulla (sisäinen orientointi) ja merkitään myös niiden vastinpisteet. Sen jälkeen kuvat asetetaan tarkastelualustalle keskenään siten, että kaikki neljä pääpistettä ovat samalla suoralla (keskinäinen orientointi). Kuvia voidaan siirtää pitkin tätä suoraan mille tahansa tarkasteluetäisyydelle.
Etäisyyden mittaaminen katutasolle.
Etäisyyden mittaaminen rakennuksen katolle. Näiden kahden parallaksimittauksen perusteella rakennuksen korkeudeksi saadaan 33.5 metriä.
Etäisyysmittauksen tarkkuus. Etäisyysmittauksen tarkkuutta voidaan arvioida kaavasta, joka saadaan, kun parallaksihavainnon epätarkkuus jaetaan kantasuhteella ja kerrotaan mittakaavaluvulla.
Korkeusmittauksen tarkkuutta ilmakuvaparilla voidaan arvioida, kun tunnetaan lentokorkeus ja kuvakanta. Kun esimerkiksi tarkkaa maastomallimittausta varten kuvataan 500 m korkeudella kameralla, jonka polttoväli on 150 mm ja kuvakoko 230 mm x 230 mm, ja käytetään tavanomaista 60 % pituuspeittoa, vastaa 0.010 mm:n parallaksimittauksen epätarkkuus korkeusmittauksen epätakkuudessa arviolta 5 cm. Miten?
Tässä tapauksessa rakennuksen korkeutta vastaavaksi parallaksieroksi on havaittu dpx = 6.95 mm.
Korkeusero lasketaan parallaksierosta korkeusmittauksen epätarkkuuden tavoin.
Peilistereoskooppi, jossa parallaksimittaukset tehdään ns. parallaksitangolla ja siihen liittyvällä mitta-asteikolla. Tangon kummassakin päässä on lasilevyt, joihin on kaiverrettu kohdistusmerkit (mittamerkit) mitattavan kohdepisteen tarkkaa osoittamista varten. Tangon pituutta säädetään sen oikessa päässä olevaa mikrometriruuvia kiertämällä. Parallaksihavainnot luetaan mikroimetriruuvin kierroksia seuraavalta mitta-asteikolta. Tangon vasemmassa päässä näkyvä mitta-asteikko liittyy parallaksihavaintojen vakio-osan eli kuvakannan säätämiseen. Kuvakanta säädetään pääpisteiden mukaan sen jälkeen, kun kuvat on orientoitu keskenään.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |