INTEGRATED BUNDLE ADJUSTMENT OF TERRESTRIAL LASER SCANNER DATA AND IMAGE DATA WITH VARIANCE COMPONENT ESTIMATION

Danilo Schneider and Hans-Gerd Maas
Dresden University of Technology, Institute of Photogrammetry and Remote Sensing
danilo.schneider@tu-dresden.de, hans-gerd.maas@tu-dresden.de

ABSTRACT

Terrestrial laser scanners and digital cameras can be considered largely complementary in their properties. Several instruments combine a laser scanner and a camera, with the lasercanner providing geometry information and the camera supplying point of surface colour. These approaches of data fusion make sub-optimal use of the complementary properties of the two devices, as they assign a master-and-slave casting to laser scanner and camera. A thorough exploitation of the complementary characteristics of both types of sensors should start in 3D object coordinate determination with both devices mutually strengthening each other. For this purpose a bundle adjustment for the combined processing of terrestrial laser scanner data and central perspective or panoramic image data, based on an appropriate geometric model for each sensor, was developed. Since different types of observations have to be adjusted simultaneously, adequate weights have to be assigned to the measurements in a suitable stochastic model. For this purpose, a variance component estimation procedure was implemented, which allows to use the appropriate characteristics of the measurement data (e.g. lateral precision of image data, precision of laser scanner range measurement), in order to determine 3D coordinates of object points. Finding optimal weights for the different groups of measurements leads to an improvement of the accuracy of 3D-coordinate determination. In addition, the integrated scanner and camera data processing scheme allows for the optimal calibration of the involved measurement devices (scanner+camera self-calibration). Moreover, it is possible to assess on the accuracy potential of the involved measurements. The presented paper describes the basic geometric models as well as the combined bundle adjustment with variance component estimation. First results, based on data in a 360° test field, are presented and analysed.

1. INTRODUCTION

Several software packages nowadays provide the possibility of combined processing of terrestrial laser scanner data and photogrammetric image data, since the combination of three-dimensional point clouds and images presents promising prospects due to their complementary characteristics:

<table>
<thead>
<tr>
<th>Terrestrial laser scanner</th>
<th>Photogrammetric image data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>(Angular) Resolution and precision</td>
</tr>
<tr>
<td>Automation potential</td>
<td>Visual Quality</td>
</tr>
<tr>
<td>3D data from one position</td>
<td>Colour information</td>
</tr>
</tbody>
</table>

Table 1. Some complementary characteristics of terrestrial laser scanner data and image data
For this reason manufactures of terrestrial laser scanners also integrate digital cameras in their scanning hardware (Ullrich et. al., 2003; Mulsow et. al., 2004). In these integrated systems, the laser scanner usually represents the dominant device, while the image information is only used secondarily for the colouring of point clouds, texturizing of surfaces or to support the interpretation in interactive laser scanner data handling. Beyond this, the use of images for the automatic registration of laser scanner datasets was suggested in previous approaches (Al-Manasir & Fraser, 2006; Dold & Brenner, 2006), as well as the automatic generation of orthophotos on the basis of image and range data (Reulke, 2006).

The integrated analysis of terrestrial laser scanner data and photogrammetric image data provides a much larger potential (Jansa et. al., 2004; Wendt & Heipke, 2006). Using the complementary characteristics of both sensor types consistently in a combined adjustment, laser scanner and camera may mutually benefit from each other in the determination of object geometry and in calibration (Ullrich et. al., 2003).

In particular, high resolution cameras may be rather beneficial in a combined system, since the high angular accuracy of sub-pixel accuracy image measurements may help to improve the lateral accuracy of laser scanners. Adapting to the operating mode of most laser scanners, which cover a 360° field of view, the use of panoramic cameras may be an interesting alternative to conventional central perspective cameras. Panoramic cameras often have a very high resolution and a large accuracy potential for the determination of 3D object coordinates (Luhmann & Tecklenburg, 2004; Schneider & Maas, 2005).

Based on the geometric models of laser scanner and camera, as well as a geometric model of panoramic cameras, which was developed at the Institute of Photogrammetry and Remote Sensing of the TU Dresden (Schneider & Maas, 2006), a combined bundle adjustment tool for the integrated processing of terrestrial laser scanner data, central perspective and panoramic image data was developed.

Since the procedure requires the simultaneous adjustment of different types of observations, it is necessary to assign adequate weights to the groups of measurements at the combined adjustment. These weights may be specified by the user, based on manufacturer specifications or practical experience. More rigorously, the weights can be determined automatically in the adjustment procedure by variance component estimation. Thus, the respective characteristics of the involved measurement devices will be optimally utilised, and an improvement of the adjustment results can be achieved (Klein, 2001; Sieg & Hirsch, 2000). Results of variance component estimation in a combined adjustment of laser scanner and image date are also presented in (Haring et. al., 2003). In this paper the implementation of a combined bundle adjustment with variance component estimation is described and analysed on the basis of multiple laser scans, central perspective and panoramic images in a 360° test field at TU Dresden.

2. GEOMETRIC MODELS

One precondition for the combined analysis of measurements from different devices (laser scanner, camera, panoramic camera) is the knowledge about the basic geometric models as well as their mathematical description. This allows for the calculation of object information (e.g. coordinates of object points) using different observations (range, angles, image coordinates) on
the one hand and for the calibration of the involved measurement devices on the other hand, if the geometric models are extended by an appropriate set of additional parameters.

2.1 Central perspective and panoramic images

Cameras with area sensors comply with the known central perspective model (Figure 1, left). Mathematically this is described by the collinearity equations. Usually these equations are extended by correction terms, which contain additional parameters (Brown, 1971; El-Hakim, 1986) to compensate errors caused by lens distortion and other effects.

![Figure 1. Central perspective and panoramic camera model](image)

Panoramic cameras are able to record a 360° horizontal field of view in one image, which is in particular beneficial for the recording of big interiors. Technically this is mostly realised by the rotation of a linear sensor. Panoramic cameras provide a very high resolution and accordingly a high accuracy potential. The panoramic camera model can be described by central perspective geometry only in one coordinate direction. The mapping process (Figure 1, right) can be represented by the projection onto a cylinder (Schneider & Maas, 2006; Amiri Parian, 2007).

The mathematical descriptions of the geometric models of central perspective and panoramic cameras (see Schneider & Maas, 2006 for the derivation) are:

\[
\begin{align*}
 x' &= x_0 - \frac{c \cdot x}{z} + dx' \\
 y' &= y_0 - \frac{c \cdot y}{z} + dy'
\end{align*}
\]

\[
\begin{align*}
 x'_{\text{pano}} &= x_0 - c \cdot \arctan \left(\frac{-y}{x} \right) + dx'_{\text{pano}} \\
 y'_{\text{pano}} &= y_0 - \frac{c \cdot z}{\sqrt{x'^2 + y'^2}} + dy'_{\text{pano}}
\end{align*}
\]

The transformation into a uniform coordinate system occurs by:

\[
\begin{align*}
 \bar{x} &= R \cdot (X - X_0)
\end{align*}
\]

where

- \(c \) = principal distance
- \(x', y' \) = image coordinates
The correction terms dx', dy' as well as dx'_{pano} and dy'_{pano} contain additional parameters for the compensation of systematic errors, which are caused by the physical characteristics of the cameras.

2.2 Laser scanner

Original measurement data of terrestrial laser scanners are spherical coordinates, i.e. range (D), horizontal (α) and vertical (β) angle. Therefore the geometric model can be described easily by the conversion of Cartesian into spherical coordinates (eq. 4). Applying equation (3), the local laser scanner coordinate system can be integrated into the uniform object coordinate system.

$$ D = \sqrt{x^2 + y^2 + z^2} + dD $$
$$ \alpha = \arctan \left(\frac{y}{x} \right) + d\alpha $$
$$ \beta = \arctan \left(\frac{z}{\sqrt{x^2 + y^2}} \right) + d\beta $$

$$ dD = k_S \cdot \sqrt{x^2 + y^2 + z^2} + k_0 $$

Figure 2. Laser scanner basic model

Analogous to the camera model, additional parameters can be considered within the correction terms dD, $d\alpha$ and $d\beta$ as an extension of the geometric model of terrestrial laser scanners. This allows for the compensation of systematic deviations from the basic model and thus for the calibration of laser scanners.

However, the calibration of terrestrial laser scanners is complicated by the fact that the manufacturers already implement geometric corrections inside the scanner, whose underlying model equations are mostly not known. Subsequently, significant systematic effects can often not be detected in the residuals of the observations. Therefore only a distance offset (k_0) and scale (k_S) parameter were used in the geometric model (eq. 5) so far, but no corrections of the horizontal and vertical angle were considered.
3. INTEGRATED BUNDLE ADJUSTMENT

Bundle adjustment allows for the orientation of an arbitrary number of images, using the image coordinates of object points as observations. The results of the calculation are the orientation parameters of the images, the 3D coordinates of object points and possibly camera self-calibration parameters. Extending this approach to the combined bundle adjustment means the integration of all laser scans, central perspective and panoramic images of each involved measurement device (scanner, camera, panoramic camera). The calculation follows the geometric constraint that all corresponding rays between object point and the instrument should intersect in their corresponding object point.

The spherical coordinates of object points measured with a laser scanner as well as the image coordinates of a camera respectively a panoramic camera are introduced as observations in one combined coefficient matrix. Figure 3 (left) shows a synthetic example of the structure of a design matrix, where white means full and black means empty position.

The calculation is performed as least squares adjustment (Gauss-Markov model) minimizing the square sum of the residuals of the observations. The results are the coordinates of object points, the position and orientation of each involved scan and image, the calibration parameters of the measurement devices as well as statistical values for the assessment of accuracies and correlations.

For the calculation of the bundle adjustment software was developed at the Institute of Photogrammetry and Remote Sensing of TU Dresden, which also allows exporting a protocol and a visualisation file. All settings are displayed in a graphical user interface (Figure 3, right) and can be changed if necessary. In order to detect and to eliminate outliers a data-snooping procedure following (Baarda, 1968) is applied.

Figure 3. Structure of design matrix (example) and user interface of combined adjustment

Within a courtyard at TU Dresden a 360° test field with ca. 100 retroreflective targets (circles with 5 cm diameter) was installed to practically verify the combined bundle adjustment. The
dimensions of this courtyard are 45 m × 45 m, the surrounding façades are 20 m high. The scanner used in the practical tests was a Riegl LMS-Z420i, whose operating software allows for the automatic determination of the centre of retroreflective targets applying a centroid operator to the intensity image. Furthermore multiple panoramas were captured with the KST Eyescan M3metric panoramic camera (Schneider & Maas, 2006), as well as a large number of images from digital SLR cameras Kodak DCS 14n and Nikon D100. The target image coordinates were determined using centroid and ellipse operators. In the following, the results of processing the data of several different sensor combinations in the test field will be shown.

The following example shows the calculation of the 3D coordinates of 75 object points of the test field. Two laser scanner positions and two panoramic camera positions were stepwise introduced into the combined bundle adjustment, as well as 8 images with (hand-held) Kodak 14-Megapixel camera and 8 images with the Nikon camera on top of the lasercaner. Subsequently, the standard deviations of the estimated object coordinates were analysed. Figure 4 shows the used configuration and devices.

![Figure 4. Imaging configuration (ground plan schema) and used devices (Riegl laser scanner LMS-Z420i, panoramic camera Eyescan M3, Kodak DCS 14n, Nikon D100)](image)

At first, only 2 laser scanner positions were used to calculate the coordinates of 75 object points in a free network bundle adjustment. The precision of the coordinates is 4.09 mm in average (RMSXYZ, table 2). Increasing the number of scanning positions to 4 positions, the RMS XYZ can be improved to 2.71 mm. Using 2 laser scans and 2 panoramic images instead, the precision of the object coordinates is even better (2.27 mm), although the redundancy of this calculation is lower. However, please note that the potential of the high-resolution panoramic camera could not be exploited, since the retroreflective targets could not be illuminated properly und the subpixel
potential of the image analysis operators could not be used to full extent. Nevertheless, the combination of both devices leads to a significant precision improvement.

The RMS of the object coordinate standard deviations could be increased again, by consideration of additional images either with the hand-held Kodak camera or the Nikon camera mounted on top of the laser scanner (table 2). Using the observations of all devices simultaneously, the average standard deviation of the object coordinates resulted in ca. 1 mm in each coordinate direction.

<table>
<thead>
<tr>
<th>Scans</th>
<th>Panos</th>
<th>Images</th>
<th>Object</th>
<th>RMSx</th>
<th>RMSy</th>
<th>RMSz</th>
<th>RMSx+y+z</th>
<th>Observ</th>
<th>Unknown</th>
<th>Redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>–</td>
<td>–</td>
<td>75</td>
<td>2.23</td>
<td>2.29</td>
<td>2.55</td>
<td>4.09</td>
<td>393</td>
<td>239</td>
<td>154</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>–</td>
<td>75</td>
<td>1.48</td>
<td>1.50</td>
<td>1.70</td>
<td>2.71</td>
<td>813</td>
<td>251</td>
<td>562</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>–</td>
<td>75</td>
<td>1.34</td>
<td>1.31</td>
<td>1.28</td>
<td>2.27</td>
<td>651</td>
<td>257</td>
<td>394</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>8</td>
<td>75</td>
<td>1.17</td>
<td>1.23</td>
<td>1.14</td>
<td>2.04</td>
<td>723</td>
<td>292</td>
<td>431</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>75</td>
<td>1.17</td>
<td>1.17</td>
<td>0.98</td>
<td>1.92</td>
<td>1001</td>
<td>310</td>
<td>691</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td>1.06</td>
<td>1.46</td>
<td>1.18</td>
<td>2.16</td>
<td>643</td>
<td>294</td>
<td>349</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>–</td>
<td>8</td>
<td>1.14</td>
<td>1.17</td>
<td>1.13</td>
<td>1.99</td>
<td>940</td>
<td>312</td>
<td>628</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>8</td>
<td>8</td>
<td>1.09</td>
<td>1.15</td>
<td>1.04</td>
<td>1.90</td>
<td>1044</td>
<td>347</td>
<td>697</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>1.11</td>
<td>1.14</td>
<td>0.99</td>
<td>1.87</td>
<td>1313</td>
<td>365</td>
<td>948</td>
</tr>
<tr>
<td>–</td>
<td>2</td>
<td>16</td>
<td>68</td>
<td>2.17</td>
<td>1.93</td>
<td>1.22</td>
<td>3.15</td>
<td>938</td>
<td>323</td>
<td>615</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>16</td>
<td>68</td>
<td>1.16</td>
<td>1.12</td>
<td>1.02</td>
<td>1.91</td>
<td>1279</td>
<td>337</td>
<td>942</td>
</tr>
</tbody>
</table>

Table 2. Calculation results (RMS of standard deviations)

While the laser scanner measurements improve the accuracy in depth direction, the image observations of the panoramic camera ensure a better precision in lateral coordinate direction. If further scans or images are added, the RMS of the standard deviations of object point coordinates can be minimized accordingly, as long as good intersection angles are maintained.

The results of this example show, that the integration of additional panoramic or central perspective images has the potential to improve the accuracy of the calculated results in general. This can be realized in practice, if the user takes additional images while the laser scan runs automatically, subsequently feeding the images into the calculation process. Similarly the images of a camera mounted on top of a laser scanner respectively a camera integrated within the laser scanner hardware can contribute to increase the accuracy.

The last two lines in table 2 show how the precision of object points increases when a laser scanner is integrated into the system. The improvement is significant in this case, because the accuracy potential of the panoramic camera is not fully used as already mentioned above.
4. VARIANCE COMPONENT ESTIMATION

The combined bundle adjustment uses different types of observations simultaneously in order to estimate the unknown parameters. For this reason it is necessary to assign suitable weights to the different groups of observations (image coordinates in central perspective and panoramic images, range measurement and angle measurements of the laser scanner). The definition of weights can be performed in terms of predefined values, in case of known a-priori standard deviations of the measurements (e.g. specifications of the manufacturer) or if experience values are available. However, the information content of the observations is not fully exploited in these cases.

Using the variance component estimation procedure (VCE) it is possible to estimate optimal weights for each group of observations (optimal in terms of minimal variances and balanced adjustment results) as well as standard deviations of the observations in the course of the bundle adjustment. This allows for the qualification of each group of measurement on the one hand and for an improvement of the adjustment results on the other hand, since the individual characteristics of the involved measurement devices can be optimally utilised (Klein, 2001; Sieg & Hirsch, 2000). By separating the horizontal and vertical angle measurement of the laser scanner as well as the horizontal and vertical image coordinates of the panoramic camera into different groups of observation, it becomes possible to draw conclusions on the characteristics of each instrument. Furthermore, also cameras or laser scanners with different accuracies can be considered simultaneously.

The weights p_i of the observations are determined by the ratio of the variance of the unit weight σ_0^2 and the variance of the observations σ_i^2, which can be derived from manufacturer’s data or from empirical values. A constant value will be set for σ_0 (e.g. 0.01 in the presented examples). Subsequently, the standard deviation of unit weight σ_i^2 shows if the a-priori standard deviations of the observations were defined too pessimistic ($\sigma_i^2 < \sigma_0^2$) or too optimistic ($\sigma_i^2 > \sigma_0^2$).

If observations of the same type have to be processed, their variance-covariance matrix Σ is calculated as product of σ_0^2 and the cofactor matrix Q. In case of a combined adjustment of different observation groups the matrix Σ will be split into components $\Sigma_i=\sigma_i^2Q_i$. The factors σ_i^2 are the variance components to be estimated which represent the a-priori measurement inaccuracies of each observation group. The calculation is carried out as described in (Koch, 1997; Sieg & Hirsch, 2000).

<table>
<thead>
<tr>
<th>Unbalanced Weighting (without Variance component estimation)</th>
<th>$\hat{\sigma}_0$</th>
<th>RMS_X (mm)</th>
<th>RMS_Y (mm)</th>
<th>RMS_Z (mm)</th>
<th>RMS_{XYZ} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Range too optimistic</td>
<td>0.0131</td>
<td>1.78</td>
<td>1.78</td>
<td>2.03</td>
<td>3.23</td>
</tr>
<tr>
<td>2 Angle too optimistic</td>
<td>0.0148</td>
<td>2.03</td>
<td>2.62</td>
<td>1.33</td>
<td>3.57</td>
</tr>
<tr>
<td>3 Panoramic coordinates too optimistic</td>
<td>0.0132</td>
<td>2.12</td>
<td>2.31</td>
<td>1.32</td>
<td>3.40</td>
</tr>
<tr>
<td>4 Central perspective coordinates too optimistic</td>
<td>0.0106</td>
<td>2.68</td>
<td>3.05</td>
<td>1.94</td>
<td>4.50</td>
</tr>
</tbody>
</table>

Table 3. Combined bundle adjustment with different stochastic models
Table 4. Combined bundle adjustment with different stochastic models

Table 3 and table 4 shows the results of 6 different practical examples. Examples (1) - (4) started with unfavourable unbalanced observation weights, examples (a) and (b) were calculated with integrated variance component estimation, each with different constellations of observation groups (compare table 5).

Table 5. Estimated a-priori standard deviations of observations of combined bundle adjustments with different stochastic models

The a-priori standard deviations within this calculation using the variance component estimation (table 5) are the square roots of the computed variance components v_i of example (a) and (b):

$$\Sigma_0 = \sum_{i=1}^{h} V_i$$ \hspace{1cm} (6)

with: Σ_0 .. covariance matrix

V_i .. components of covariance matrix: $V_i = v_i \cdot I$ \hspace{1cm} (I .. unit matrix)

h .. number of observation groups

The calculation of the variance components v_i is described in (Koch, 1997; Sieg & Hirsch, 2000).

The estimated standard deviations (table 5) allow for drawing conclusions about the quality of the observations. The values does not only depend on the accuracy of the instrument, but other factors also influence the estimated values, as for example the used target design, the type of image measurement (interactive or automatic), stability of the tripod installation, etc.

Generally it is noticeable that the variance component estimation has the potential to contribute to the improvement of the accuracy, in particular, if the precision of the involved instruments is not
sufficiently well known a-priori (see table 3 and table 4). Table 5 demonstrates the capability of the calculation with variance component estimation to estimate the precision of the involved groups of measurements – widely independent from the definition of a-priori approximate weights.

The variance component estimation results in balanced weights and therefore in optimal adjustment outcomes. The values represent the variance components estimated within the adjustment with variance component estimation. These variance components give realistic information about the precision of each observation group.

Furthermore, it is even possible to draw conclusions on differences of the horizontal and vertical angle precision of the laser scanner, as well as on differences in the horizontal and vertical image coordinate accuracy, in particular for panoramic cameras. For example in calculation (b) the horizontal angle and the vertical angle measurements were separated in different observation groups in comparison to calculation (a). Looking at the appropriate results, it can be seen, that the Hz-angle can be measured more accurate that the V-angle.

5. CONCLUSION AND FURTHER WORK

The adjustment of laser scanner observations in combination with observations of other sensors (panoramic or central perspective camera) seems to be a promising tool, as the advantages of different kinds of observations can be optimal utilized. Beyond a hardware combination in order to give colour to point clouds or surfaces it has been shown, that it is possible to increase the accuracy of 3D coordinate determination and to calibrate the involved instruments simultaneously as well as to assess their precision. In particular, the use of variance component estimation leads to optimal balanced adjustment results.

In further work different geometric models for fisheye lenses will be tested and implemented into the combined adjustment, in order to allow for an integration of fisheye images into the adjustment process. Finally, the combined bundle adjustment will be extended with the objective of introducing lines as observations. This step might be interesting, since lines exist more often in natural objects in comparison to points. Furthermore, lines have the potential to be extracted automatically in laser scanner point clouds and images. The goal is to develop algorithms for an automatic procedure for the fully automatic orientation and calibration of laser scanner and camera combinations simultaneous with the proper object recording.

6. REFERENCES

